Change the chapter
What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resting on the slave cylinder? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter.
Question by OpenStax is licensed under CC BY 4.0.

$136 \textrm{ N}$

Solution Video

OpenStax College Physics for AP® Courses Solution, Chapter 11, Problem 25 (Problems & Exercises) (1:51)

Sign up to view this solution video!


No votes have been submitted yet.

Quiz Mode

Why is this button here? Quiz Mode is a chance to try solving the problem first on your own before viewing the solution. One of the following will probably happen:

  1. You get the answer. Congratulations! It feels good! There might still be more to learn, and you might enjoy comparing your problem solving approach to the best practices demonstrated in the solution video.
  2. You don't get the answer. This is OK! In fact it's awesome, despite the difficult feelings you might have about it. When you don't get the answer, your mind is ready for learning. Think about how much you really want the solution! Your mind will gobble it up when it sees it. Attempting the problem is like trying to assemble the pieces of a puzzle. If you don't get the answer, the gaps in the puzzle are questions that are ready and searching to be filled. This is an active process, where your mind is turned on - learning will happen!
If you wish to show the answer immediately without having to click "Reveal Answer", you may . Quiz Mode is disabled by default, but you can check the Enable Quiz Mode checkbox when editing your profile to re-enable it any time you want. College Physics Answers cares a lot about academic integrity. Quiz Mode is encouragement to use the solutions in a way that is most beneficial for your learning.

Calculator Screenshots

OpenStax College Physics, Chapter 11, Problem 25 (PE) calculator screenshot 1
Video Transcript
This is College Physics Answers with Shaun Dychko. We have a master cylinder connected to a slave cylinder by way of this tube, and the pressure in the master cylinder and the slave cylinder has to be the same, that's Pascal's principle. So we're given the diameter of each of these cylinders and knowing that the pressures are the same and knowing the diameter, we can figure out how the forces compare because the force in the master cylinder divided by the area of the master cylinder has to equal the force applied on the surface of this slave cylinder divided by its area. We'll solve for F m by multiplying both sides by the area of the master cylinder. So the force has to be applied downwards on this master cylinder. It's going to be the force the slave cylinder exerts upwards times the area of the master cylinder divided by the area of the slave cylinder. So that's m g is the force that the slave cylinder has to apply, that's the weight of the car times the area of the master cylinder which is pi times its diameter squared over four, divided by pi times diameter of the slave cylinder squared over four. The pi's and the fours there cancel. We're left m g d m squared over d s squared. So that's 2000 kilograms mass of the car, times 9.8 newtons per kilogram, times two centimeters diameter of the master cylinder squared and I've written two centimeters instead of two times ten to the minus two meters, that conversion was not really necessary because I can see that these centimeters squared are going to cancel with the centimeters squared in the denominator and so there is no need to convert them into meters. But if you did convert them into meters, that would be fine. We'll divide all this by 24 centimeters squared which is 136 newtons.