Change the chapter
Question
The energy released from condensation in thunderstorms can be very large. Calculate the energy released into the atmosphere for a small storm of radius 1 km, assuming that 1.0 cm of rain is precipitated uniformly over this area.
Question by OpenStax is licensed under CC BY 4.0.

$7.1 \times 10^{13} \textrm{ J}$

This amount of energy is comparable to that release during the explosion of a small atomic bomb. The reason the energy from this storm will not create damage in the way the energy from the atomic bomb would is that energy in the two scenarios are released over very different time periods. The power, in other words, is very different. The atomic bomb releases the energy almost instantly, and it's this enormous power that creates damage.

Solution Video

OpenStax College Physics for AP® Courses Solution, Chapter 14, Problem 21 (Problems & Exercises) (2:38)

Sign up to view this solution video!

Rating

No votes have been submitted yet.

Quiz Mode

Why is this button here? Quiz Mode is a chance to try solving the problem first on your own before viewing the solution. One of the following will probably happen:

  1. You get the answer. Congratulations! It feels good! There might still be more to learn, and you might enjoy comparing your problem solving approach to the best practices demonstrated in the solution video.
  2. You don't get the answer. This is OK! In fact it's awesome, despite the difficult feelings you might have about it. When you don't get the answer, your mind is ready for learning. Think about how much you really want the solution! Your mind will gobble it up when it sees it. Attempting the problem is like trying to assemble the pieces of a puzzle. If you don't get the answer, the gaps in the puzzle are questions that are ready and searching to be filled. This is an active process, where your mind is turned on - learning will happen!
If you wish to show the answer immediately without having to click "Reveal Answer", you may . Quiz Mode is disabled by default, but you can check the Enable Quiz Mode checkbox when editing your profile to re-enable it any time you want. College Physics Answers cares a lot about academic integrity. Quiz Mode is encouragement to use the solutions in a way that is most beneficial for your learning.

Calculator Screenshots

OpenStax College Physics, Chapter 14, Problem 21 (PE) calculator screenshot 1
Video Transcript
This is College Physics Answers with Shaun Dychko A storm, which we’ll assume has a circular shape of radius one kilometer, which his 1000 meters, has precipitated one centimeter of water, which is .01 meters, when you multiply by 1 meter per hundred centimeters. And all of this water in this volume, which is liquid state, must have originated as a vapor. And so, in other words, the vapor condensed to form the water that accumulated here. And so when it did that, it released some heat of vaporization. Or heat of condensation, you might say. So, we need to figure out how much that heat is, and we need to know what the mass of this water is. And we can calculate the volume, and then, knowing that density is mass divided by volume we can solve for mass by multiplying both sides by v, and then switching the sides around, then you have mass is density times volume. And the volume of the cylinder, is the area of one of the round ends multiplied by the height. So that’s, pi r squared, pi times radius squared, multiplied by height. And that’s what I put in here, in place of volume. And the density of water is a thousand kilograms per cubic meter. And the latent heat of vaporization 2256 times 10 to the three Joules per kilogram. So, all of this mass gets plugged into this heat of vaporization formula, which is mass times latent heat of vaporization. It should have a v in there instead of an f. Coz it’s not freezing, it’s turning into liquid. Okay, so we have 1000 kilograms per cubic meter density, times pi, times the radius, 1000 meters squared, times the height of one centimeter, which is .01 meters. Then we multiply that by the latent heat of vaporization to get 7.1 times 10 to the 13 Joules must have been released, due to the condensation of the water vapor. Now this is an enormous amount of energy and it’s comparable to a small atomic bomb explosion. And, the reason why this storm does not cause the same destruction as an atomic bomb, is because, even though the energies are comparable, the time during which this energy is released is very different. So an atomic bomb would release all this energy in seconds, whereas a storm will take several hours to release it.