Change the chapter
Question
A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.
1. $v_0 = -1.40 \textrm{ m/s}$, $t = 1.8 \textrm{ s}$, $y = 0$
2. $18\textrm{ m}$
Solution Video

# OpenStax College Physics Solution, Chapter 2, Problem 44 (Problems & Exercises) (2:13) Rating

No votes have been submitted yet.

Quiz Mode

Why is this button here? Quiz Mode is a chance to try solving the problem first on your own before viewing the solution. One of the following will probably happen:

1. You get the answer. Congratulations! It feels good! There might still be more to learn, and you might enjoy comparing your problem solving approach to the best practices demonstrated in the solution video.
2. You don't get the answer. This is OK! In fact it's awesome, despite the difficult feelings you might have about it. When you don't get the answer, your mind is ready for learning. Think about how much you really want the solution! Your mind will gobble it up when it sees it. Attempting the problem is like trying to assemble the pieces of a puzzle. If you don't get the answer, the gaps in the puzzle are questions that are ready and searching to be filled. This is an active process, where your mind is turned on - learning will happen!
If you wish to show the answer immediately without having to click "Reveal Answer", you may . Quiz Mode is disabled by default, but you can check the Enable Quiz Mode checkbox when editing your profile to re-enable it any time you want. College Physics Answers cares a lot about academic integrity. Quiz Mode is encouragement to use the solutions in a way that is most beneficial for your learning.

## Calculator Screenshots Video Transcript
This is College Physics Answers with Shaun Dychko. A helicopter throws down a life-preserver with an initial velocity of negative 1.40 meters per second. We say this velocity is negative because we take upwards to be the positive direction and it's observed that this life-preserver takes 1.8 seconds to reach the water. The water we'll take to be the zero point in our position and that means the initial position we don't know and we have to find it, that's going to be part (b). So for part (a), we are just writing down the things that we know; the initial velocity is negative 1.40 meters per second, the time it takes to reach the water is 1.80 seconds and the final position we know is zero because we defined the water to be the zero position because normally we measure height with respect to the ground or the ocean or something. So part (b), we are gonna figure out what is the position of this helicopter. Now we know what y is but we don't know y naught, the initial position and this is equation [2.76] which says the final position is the initial position plus the initial velocity times time minus one-half times acceleration due to gravity multiplied by time squared. And we are going to rearrange this to solve for y naught, which is the height of the helicopter, and we are going to subtract v naught t and add one-half gt squared to both sides. And so we'll take all this and copy it and paste it over here... something like that... and we end up with this line here. And so the initial position is the final position minus v naught t plus one-half gt squared So that is zero because that's the final position, zero meters, minus negative 1.40 meters per second multiplied by 1.80 seconds and you have to be careful with minus signs here; this minus from the equation and the negative on the initial velocity together makes a positive and then we add to that one-half times 9.8 meters per second squared times 1.80 seconds squared giving 18 meters is the height of the helicopter.