Change the chapter
Question
The average particle energy needed to observe unification of forces is estimated to be $10^{19} \textrm{ GeV}$. (a) What is the rest mass in kilograms of a particle that has a rest mass of $10^{19} \textrm{ GeV/c}^2$ ? (b) How many times the mass of a hydrogen atom is this?
1. $2\times 10^{-8} \textrm{ kg}$
2. $1\times 10^{19}$ times the mass of a hydrogen atom.
Solution Video

# OpenStax College Physics for AP® Courses Solution, Chapter 34, Problem 13 (Problems & Exercises) (1:32) Rating

No votes have been submitted yet.

Quiz Mode

Why is this button here? Quiz Mode is a chance to try solving the problem first on your own before viewing the solution. One of the following will probably happen:

1. You get the answer. Congratulations! It feels good! There might still be more to learn, and you might enjoy comparing your problem solving approach to the best practices demonstrated in the solution video.
2. You don't get the answer. This is OK! In fact it's awesome, despite the difficult feelings you might have about it. When you don't get the answer, your mind is ready for learning. Think about how much you really want the solution! Your mind will gobble it up when it sees it. Attempting the problem is like trying to assemble the pieces of a puzzle. If you don't get the answer, the gaps in the puzzle are questions that are ready and searching to be filled. This is an active process, where your mind is turned on - learning will happen!
If you wish to show the answer immediately without having to click "Reveal Answer", you may . Quiz Mode is disabled by default, but you can check the Enable Quiz Mode checkbox when editing your profile to re-enable it any time you want. College Physics Answers cares a lot about academic integrity. Quiz Mode is encouragement to use the solutions in a way that is most beneficial for your learning.

## Calculator Screenshots Video Transcript
This is College Physics Answers with Shaun Dychko. We want to find the rest mass of a particle that has an energy of 10 to the 19 gigaelectron volts per c squared. So energy is mass times c squared and so we can divide both sides by c squared to solve for m. So we have 10 to the 19 gigaelectron volts per c squared and we are gonna convert this into joules by multiplying by 10 to the 9 electron volts per gigaelectron volt and then multiply by 1.602 times 10 to the minus 19 joules per electron volt; this gives joules per c squared then we divide that by the speed of light— 2.998 times 10 to the 8 meters per second for every c—and we square that and we get 2 times 10 to the minus 8 kilograms is the rest mass of a particle with this energy. And then the next question is what fraction or how many times is this mass of a hydrogen atom? So we take that mass and this is the unrounded value— 1.78 times 10 to the minus 8 kilograms— and we divide that by the mass of hydrogen which is 1.00784 atomic mass units for every hydrogen atom then we multiply that by 1.661 times 10 to the minus 27 kilograms per atomic mass unit and we are left with 1 times 10 to the 19. So this particle could be responsible for unifying all the four fundamental forces is 1 times 10 to the 19 times the mass of a hydrogen atom.